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Recovering isotropic statistics in turbulence simulations: The Kolmogorov /bth law
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One of the main benchmarks in direct numerical simulations of three-dimensional turbulence is the Kol-
mogorov prediction for third-order structure functions with homogeneous and isotropic statistics in the infinite
Reynolds number limit. Previous direct numerical simulatiéDblS) techniques to obtain isotropic statistics
have relied on time-averaging structure functions in a few directions over many eddy-turnover times, using
forcing schemes carefully constructed to generate isotropic data. Motivated by recent theoretical work, which
removes isotropy requirements by spherically averaging the structure functions over all directions, we will
present results which supplement long-time averaging by angle-averaging over up to 73 directions from a
single flow snapshot. The directions are among those natural to a square computational grid, and are weighted
to approximate the spherical average. We use this angle-averaging procedure to compare the statistically steady
flows generated by two different forcing schemes in a periodic box. Our results show that despite the apparent
differences in the two flows, their isotropic components, as measured by the Kolmogorov laws, are essentially
identical. This procedure may be used to investigate the isotropic part of the small-scale statistics of any
quantity of interest. The averaging process is inexpensive, and for the Kolmogorov 4/5 law, reasonable results
can be obtained from a single snapshot of data. This implies consistency with the recently derived local
versions of the Kolmogorov laws, which do not require long-time averages.
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[. INTRODUCTION where dur is a velocity increment along a vector transverse
to the separation vectar. In Eq. (2) and henceforth, the
Both experimental and numerical studies of turbulencevector argument is implicit. This combined with Eq(1)

have attempted to observe the 1941 predictions of Kolmoggives the “4/15 law” and the “4/3 law,”
orov [1] (which we will call K41) for the statistics of isotro-
pic, homogeneous, fully developed turbulence in the limit of n 4
L ) . : . . (du (Suq)?)=— -—er, 3
infinite Reynolds number in an incompressible fluid. A main 15
result of the theory is the so-called “4/5 law:”

4
4 du|du|?y=— zer, 4
([ou(r 0= Zer, & ol =5 @
. where|du| denotes the total magnitude of the velocity dif-
ou(r,x)=[u(x+r)—u(x)]-r, ference across. We will refer to the three laws given by
A Egs. (1), (3), and(4), and the related theory collectively as
r=rlr, K41-3.

The K41-3 results have served as invaluable benchmarks
where(-) denotes ensemble averaging. The left hand side ofor the empirical study of high Reynolds number turbulence
Eq. (1) is the well-known third-order longitudinal structure in both experiments and numerical simulations. Considered
function. The length scale must lie in the inertial rangey  as exact results, they have allowed investigators to assess the
<r<L, sufficiently far from the large scaldsand the dis- degree to which homogeneous, isotropic, and high Reynolds
sipation scales given by the Kolmogorov lengthThe mean  number conditions have been attained. Furthermore, the deri-
energy dissipation rate of the flow is given byThe 4/5 law  vation of the K41-3 relations requires a fundamental, un-
is one of the few exact, nontrivial results known in the theoryproven assumption, that turbulent energy dissipation has a
of statistical hydrodynamics. It may be reformulated in termsstrictly positive limit as viscosity tends to zero. Hence, the
of other components of the structure function by using thevalidity of the K41-3 relations constitutes an important test

incompressibility constrairi2] of this basic assumption. Experiments in high Reynolds
14 number turbulence, performed over the past half century, do,
a_- 2 3 by and large, support the linear scaling of the third-order

(du (8ur)?) 69 [r{(8uL)™)], @ structure functions irr. The convergence to the 4/5 coeffi-
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cient is quite slow as Reynolds number increases for largéor almost every(Lebesgugpointt in time, wheregg is the
scale anisotropic experimer{3,4], although there is an em- instantaneous mean energy dissipation rate over the local re-
pirical consensus that indeed this is asymptotically the corgion B. This version of the K41-3 results does not require
rect coefficient. Recent numerical simulatidis§ of the iso-  stationarity, homogeneity, or isotropy of the flow. Long-time
tropically forced Navier-Stokes equations also emphasize thgr ensemble averages are also not required, as in the original
slow approach to the 4/5 law, as the Reynolds numbers aig41 theory[17]. The Duchon-Roberf12] and Eyink[13]
pushed as high as computational power would allow. A keY,ersions of K41-3 are truly local in space and time.

feature of both experimental and numerica_l endeavors is theé \ya are motivated in the present work by the existence of
large volumes of data required; very long-time averages, e statistics embedded in anisotropic data, as sug-

tending over many integral length scales or eddy-turnove ested by previous work. It is clear that both experiments

times are needed to obtain adequate statistics and to observe , . . T o
and simulations face intrinsic difficulties in achieving the
the trend toward K41-3.

A modified version of the 4/5 law, which does not assumehigh Reynolds numbers and isotropic limit required by the

isotropy of the flow, now exists. Nie and Tanvéét proved K41 theory. Both anisotropy and finite Reynolds numbers

that the 4/3 and consequently, the 4/5 law can be recoveregPNSPire to shorten the inertial range. Experiments have
in homogeneous, but not necessarily isotropic, flows: achieved Reynolds numbers several orders of magnitude
higher than simulations. The indication is that at such high
1(T dQ r dx 5 Reynolds numbers, the large-scale anisotropies decay faster
ffo dtf Ef FWUL(“X'U] than the isotropic scales, allowing the latter to dominate at
small scale$14]. However, while the linear scaling in of
4 the third-order structure function, is fairly robust, the coeffi-
== gsf- 5 cient exhibits only a slow trend toward 4/5, as indicated by
the numerical work of Ref.5]. It is clear that for anisotropic
The angle integratiod() integrates irr over the sphere of forcing, some choices of directions for the vector increnment
radiusr. For each poink, the vector increment is allowed  are more “isotropic” than others].
to vary over all angles and the resulting longitudinal mo-  The concept of averaging over the sphere in order to ex-
ments are integrated. The integration oxes over the entire  tract the isotropic component of turbulence data has existed
flow domain. The integl’ation over timeextends over |0ng for some t|me[15,1a Present high_Reyno|dS number ex-
times, and the long-time average is consistent with the emyeriments provide limited data, often only a few spatial
semble average of the original K41 theory since ergodicityysints of data acquisition, with vector increment directions
allows identification of ensemble averages with time avereing limited by the location of the probes and the imple-
ages[7]. In Eq. (5), the integration ovef) extracts the iSO hentation of a suitable space-time surrogai@aylor's hy-

}r?lpm comi)orlenj[thof a g(tanerally am{sgtg]oplc dflow. T.h'sl IS pothesi$. Such configurations are not suitable to spherical
uly consistent with recent experimenta, 2} and numerica averaging. Numerical data has, in principle, complete space-

[10,11 efforts to quantify anisotropic contributions by pro- time information of the flow. However, the interpolation of

jecting the structure function onto a particular irreducible . .

representation, labeled ky=0,1 of the SCB) symme- square-grid data over spherical shells has been deemed too

try group. The ,angle-average,d ,E(ﬁ) corresponds to projec- expensive[6], or, when some such interpolation scheme is
implemented, has not been used at sufficiently high Reynolds

tion onto thej =0 (isotropig sector by integration over the X
sphere. The authors of Ré6] do not perform, numerically, numbers as would allow for observations of the K41 type

the average over the sphere. However, they do point out that0l: The new angle-averaged and “local” laws of Refs.
the direction ofr matters strongly. In their anisotropic direct [8—10] provide us with the theoretical impetus to investigate
numerical simulation(DNS) simulation at moderate Rey- and extract the isotropic component of the flow in high Rey-
nolds number, the result of takingalong a coordinate direc- nolds number anisotropic turbulence. We use a method of
tion gave very poor agreement with the laws, whereas takinggking the average over angles which avoids the expense and
r along a body diagonal, as defined by the square grid, gaveffort of interpolating the square-grid data over spherical
much better agreement. shells.

A local version of the 4/3 law was recently derived by In Sec. Il we discuss the numerical method and describe
Duchon and Robeift12]. Subsequently, Eyink13] derived the stochastic and deterministic numerical forcing schemes
the corresponding version of the 4/5 and 4/15 laws. Thaised in the past and reimplemented by us. In Sec. Il we
statement is the following: Giveany local regionB of size  present an easily implemented scheme to average over a fi-
R of the flow, for r<R, and in the limitsy—0, thenr  nite number of angles. Using the second- and third-order
—0, and finally6—0, isotropy relations, we demonstrate that this scheme is a good

approximation to the true spherical average. We then present
1 (t+s dQ r dx . i
((5UL)3>(Q,B)= "m_J dTJ _J —[Su (r:x, 7] results for the angle-averaged third-order structqre functlons
500/t 4w ) RS computed both from a snapshot of the flow at a single instant
in time and from time averaging the data from several snap-
4 shots. A summary and concluding discussion of the results is

g% © given in Sec. IV.

((up)®= lim

T—oo
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TABLE |. The parameter values for the two data sdt. A. Deterministic forcing
=number of grid points per coordinate directiorn= viscosity, &
=mean energy dissipation ratep=Kolmogorov scale, R,
=Taylor microscale Reynolds number,=number of eddy turn-

We first define the energy in each spherical wave number
k in the usual way:

over times to spin up, ang, = number of eddy-turnover times com- 1

puted after spin up. E(k)= % ~u?, (9
k-0.5<TK[<k+0.5 2

Data set N v € Kmax? Ry ng n;

Stochastic 512 &10-% 5 11 263 6 6 whereu, is thekth Fourier coefficient ofi. We then choose

a target spectrum function given (k), which we set to
F(1)=F(2)=0.5 andF(k)=0 for k>2. We generate a ve-

locity field v, with energyF (k), by setting

Deterministic 512 #«10°% 156 1.1 249 1 6

IIl. NUMERICAL SIMULATIONS

~ F(k)~
The numerical simulation of the forced Navier-Stokes V= %uk.
equations for an incompressible flow is computed according
o The Fourier coefficients of the forcing function are then
given by
U+ wXu+Vep=rV2u+f, (7)
2 [T, FO>Ek)
V.u=0, 8 “lo, F(k)=<E(k).

where vorticityw=V X u and ¢ is determined so as to main- The relaxation parameter is chosenas =2|Vul, a sim-

tain V-u=0. The domain is a periodic box of side=27  Plified version of the formula given in Reff17]. _
with N=512 grid points to a side. A standard Fourier pseu- This forcing simply relaxes the amplitudes of the Fourier
dospectral method is used for the spatial discretization angoefficients in the first two wave numbers, so that the energy
the equations are integrated in time using a fourth-ordeMatches the target spectruf(k) in those wave numbers. It
Runge-Kutta scheme. Aliasing errors from the nonlineahas no effect on the phase of the coefficients. The phases are
term are effectively controlled by removing all coefficients Observed to change very slowly, giving rise to persistent an-

with wave-number magnitude greater thiap,,= (y2/3)N.  isotropy in the large scales.

The code is optimized for distributed memory parallel com-

puters and uses MPI for interprocess communication. The B. Stochastic forcing
runs were made using 256 processors of a Compaq ES45

Our second type of forcing is modeled after the stochastic
scheme of Ref[5], in which the wave numbelk|<2.5 are
stochastically forced. This ensures that the phase of each

i . . forced mode changes sulfficiently rapidly so that the large
schemes described in Re[8,17,18, where the energy in a scales will be statistically isotropic. At the beginning of each

few low wave numbers IS relax_ed ba_ck to a target spe_ct_rur_wh-me step, we choose a divergence-free forcing function
We refer to the output using this forcing as the deterministic

dataset. The second forcing is the stochastic forcing used in f=VxA~lg, (10
Ref. [5], where the Fourier coefficients bfare chosen ran-

domly, and we refer to the data produced with this forcing 8% here the Fourier coefficients of denoted byg, , are cho-

the stochastic dataset. Both forcings have advantages agd randomly with uniformly distributed phase and Gaussian

disadvantages. The de‘Ferministic forcing equilibrates qUiCI(hf/distributed amplitude. The variance in the Gaussian distribu-
and has less variance in time, so that less data is needed B8n is chosen such that

converged time averages. But there is an unavoidable anisot-

ropy throughout the simulation if the forcing is restricted to

the lowest wave numbers. The stochastic forcing has a larger % [gu|?= |g|?=18. (1)

variance in time, so that data from more snapshots is needed 0.5<[k|<15 15<[k[<25

to obtain converged time averages, but statistics from those

snapshots are obse_rved to be more isotropic. We_ perform lIl. ANGLE-AVERAGING TECHNIQUE

both kinds of forcing in order to demonstrate the equivalence

of the results when angle averaging is applied to the data. = We would like to extract the isotropic component of a
Parameters of interest for both simulations are given irflow by a suitable average of the two-point structure func-

Table I. For the stochastic forcing, we have chosen parantions over the solid angl€, as defined by Eqg5) and(6).

eters similar to those used for the 31dmulations in Ref. We approximate the spherically averaged third-order longi-

[5]. The parameters for the deterministic case were chosen godinal structure function by the following average over a

that R, would be similar in both cases. finite numberNy of directions:

cluster.
We make use of two different types of low wave-number
forcing. The first is modeled after the deterministic forcing
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FIG. 2. Two-dimensional example, in tiéY plane, of how data
is collected for the angle-averaging procedure. Four directions are
FIG. 1. Unit sphere in a Cartesian coordinate grid, showingshown:(1,0), (2,1), (3,1), and(1,1). Velocity data is known at all the
some of theNy=73 directions over which the average is taken. grid points. The black dots represent valuesr afhere structure
functions for a particular direction can be computed with no inter-
Ng NS polations. Each structure function can then be interpolated to spe-

1 o .
<[5UL(r)]3>:N_d m le ;1 Wj[5U|_(Yj ;Xi)]a, (12) cific values ofr, shown by the white dots.

not consider the— Fj directions since they give the same

wherex; denotes grid points, denotes the increment vector o N o
contribution ag; when averaged over the periodic computa-

in the jth direction,r=|r;| is fixed, and thew; are quadra- .

ture weights. Here we are using the longitudinal structurdional domain. o

function as an example. The procedure applies equally well FOr €ach of theNy directions, we form a set of

to any two-point structure function. =1,... N, sgpara’glon vectomq+_€rj ..Smc.erj is the mini-
The simulation is computed on a fixed uniform rectangu-MUM Separation distance of grid points in gth direction

lar mesh. Thus, we are faced with the difficulty of evaluating@"d ¢ is an integer, all the;+ £r; lie on our computational

u at points &+r;), most of which will not be grid points. grld. Th|s is illustrated(in two dimensions for four dwep-

The most straightforward approach would be to performtions in Fig. 2, where the black dots represent poixts

three-dimensionai3D) interpolations at each of the points T ¢fj @ndx; is shown at the origin. We can now efficiently

(xi+1;). This requires N3Ny 3D interpolations of the COmpute structure functions Ny different directions, aN,

velocity-vector field for each separation distamcevhich is separation distances for each direction, without any 3D inter-

prohibitively expensivé6]. polations:
We have developed a less expensive technique for angle-
averaging, which does not require any 3D interpolations. We 1 N®
first choose vectors; from among those natural to a square ([8u(€rpPP)=— > [ouL(er;;x)]° (13
computational grid. We restrict ourselves to the set of all N®i=1

unique directions which can be expressed with integer com-

ponents with length less than or equal td1. Let j For each direction, we get a one-dimensional curve as a
=1, ... Ng be the index for this set. Eachis the minimum  function of {r;, as shown in Fig. 3.

grid-point separation distance in thth direction. This set is In the figure, points represent structure function values at
generated by vectord,0,0, (1,1,0, (1,1,, (2,1,0, (2,1,), the separation distancé$rj|, and each line is a cubic-spline
(2,2,9, (3,1,0, and(3,1,D, by taking all the index and sign fit to the data a =1, ... N, along each of thé\, direc-
permutations of the three coordinates, and removing any vedions. One can see that only a few directions are computed at
tor which is a positive or negative multiple of any other each of the separation distances, so we cannot directly take
vector in the set. This procedure generates a totaNgf an angle-average from this data. But one can also see that the
=73 unique directions. The unit vectors associated with eachurves are quite smooth and the cubic spline is an excellent
direction are plotted as points on the sphere in Fig. 1. Onénterpolant. Thus, we use cubic-spline interpolation to calcu-
can see that these points are well distributed over the spherate the structure function in each of tiNg directions, at

Both the unit vectorfsj and-— FJ- are plotted, but below we do separation vectOter of any desired lengtin.
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FIG. 3. The third-order structure function, nondimensionalized FIG. 4. Second-order isotropy relation for the stochastic dataset,
by norma"zing Withar, Computed from a Sing|e snapshot from the VS the nondimensional Sca1é7]. Solid lines: Left and rlght sides of
deterministic dataset. The abscissa shows the nondimensional sc&ié- (15), normalized byr#® and angle-averaged. The units on the
r/7, where 7 is Kolmogorov length scale. The dots indicate the ordinate are those of?”. Dotted lines: The same quantities for a
values of the structure function computed at variéus. Each thin ~ Single coordinate direction.
curve is the cubic-spline interpolation through all computed values
of the structure function in a particular direction. Only a few of the r d
73 different directions are shown here for visual clarity. The hori- ((dur)?)y= ( 1+ > dr)<(5u'-)2>’ (19
zontal line indicates the 4/5 mark.

Once the data for each direction has been interpolated to a

2\ 3
common separation distanae we can approximate the {u(dur)%)= 6 drr((&uL) )- (16)
angle-average at by quadrature over the followinlyly di-
rections: These equations require only isotropy and incompressibility.
Ng Thus, in DNS data, where incompressibility is obtained to
3 _ - _ ° 13 numerical round off error, deviations in the above relations
{[ouc(nI®) Ng le wi(LouL(rry)T). (14) are a measure of the anisotropy in the data. In Rgf.the

left and right sides of these equations are plotted after aver-
In order to determine the quadrature weights we use the
software packagsTRIPACK [19] to compute the Voronoi til- 2

ing generated by pointfq on the unit sphere centeredat
Weight w; is the solid angle subtended by the Voronoi cell
containing point; .

The angle-averaging procedure described above can I_
implemented efficiently on parallel computers, requiring-%
only the same type of parallel data transpose operator alreacg
used by a parallel pseudospectral code. The total cost of thig
angle-averaging procedure for one snapsii@& directions
and 100 different separation distancesabout the same as
150 time steps of the Navier-Stokes code. Thus, for a singl
eddy-turnover time, where thousands of time steps are re
quired, the angle-averaging statistics can be computed durir ~ °f
the computation with minimal impact on the total CPU time
requirement.

151 |

Third ord

-0.5 L L

A. Extracting the isotropic component rm

We first present results demonstrating how well the angle- FiG. 5. Third-order isotropy relation for the deterministic
averaging procedure performs at extracting the isotropigataset vs the nondimensional scale. Solid lines: Left and right
component from our DNS data. We again follow R& and  sides of Eq(16), normalized by and angle-averaged. The units on
examine the relations between the second- and third-ordehe ordinate are those of the energy dissipation satotted lines:
velocity structure functions: The same quantities for a single coordinate direction.
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FIG. 6. The nondimensional third-order longitudinal structure  FIG. 7. The nondimensional third-order longitudinal structure
function, computed from a single snapshot of the stochastic datasdtinction computed from a single snapshot of the deterministic
vs the nondimensional scaléz. The dots indicate the values of the dataset vs the nondimensional scelg. The various symbols and
structure function computed at variods; . The thick curve is the  lines mean the same as in Fig. 6.
angle average. The horizontal line indicates the 4/5 mark.
are quite different, while the angle-averaged results are quite
reasonable and similar to each other as well as similar to the
results obtained from long-time averaging of the coordinate
directions presented in Reff5] and shown for our data in

ec. Il D. Thus, we conclude that angle-averaging the data
om a single snapshot yields a very reasonable result. Simi-
ar results(not plotted are obtained for the 4/3 and 4/15

aging in time. Excellent agreement is obtained in the inertia
range, with some departure at larger scales.

In Fig. 4, we show the second-order isotropy relation for
our stochastic dataset, and in Fig. 5 we show the third-orde
relation for the deterministic dataset. This data is compute
by angle-averaging over a single snapshot of the flow. Th
agreement is excellent, both in the inertial range and at th
largest scales. For comparison, the figures also show the )
same relations from the same snapshot but using only a C. Temporal variance

single coordinate direction instead of angle-averaging. In To illustrate the variance in time of the third-order longi-
that case, there are significant differences for scales well inteudinal structure function, with and without angle-averaging,

the inertial range. Thus, the angle-averaging technique amwe plot the peak value as a function of time for each dataset
pears to be extremely effective in extracting the isotropic

component of anisotropic data even at large scales, wher [
anisotropy remains after time averaging over many snap-
shots. Similar results were obtained for the second-ordel
isotropy relation from the deterministic dataset and for the  °¢f
third-order isotropy relation from the stochastic dataset.

0951

0.85

08

B. Angle-averaging a single snapshot

X% >/ (en)

=075
We now present results using angle-averaging to compute. L
the third-order longitudinal structure function in the 4/5 law. % [
Figures 6 and 7 show the result of the angle-averaging pro- %0,65
cedure described above for single snapshots of the stochast :
and deterministic datasets, respectively. The snapshots ai  *[:
taken after the flow has had time to equilibrate. The value of ,sst:
the mean energy dissipation ratewas calculated from the
snapshot. This is to be contrasted with previous works in  *% 2 3 4
which ¢ is a long-time or ensemble average. We have there- v
fore computed a version of the 4/5 relation which is local in  FiG, 8. The angle-averagegolid line and single-direction
time. The dots represent the data from all 73 directions at allgotted ling values of the peak of the nondimensionalized third-
values ofr that were computed. The final weighted angle-order longitudinal structure function for deterministic dataset, as a
average of Eq(14) is given by the thick curves in both Figs. function of nondimensional timg/ T, whereT=2E/¢ is the eddy-
6 and 7. One can see that the results from different directionsirnover time.

u
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FIG. 9. The angle-averagetolid line) and single-direction

(dotted ling values of the peak of the nondimensionalized third-  FIG. 10. The nondimensional time- and angle-averaged third-
order longitudinal structure function for stochastic dataset, as arder structure function, for the deterministic datacsatlid line)
function of nondimensional time, as in Fig. 8. and the stochastic datadelotted ling, as functions of the nondi-

o o mensional scale/». The two curves are almost indistinguishable.
in Figs. 8 and 9. The solid line is the angle-averaged value,

and the dashed line is the value from a single coordinate We have used the incompressibility relations for isotropic
direction. The angle-averaged value has a significantly resecond- and third-order statistics as well as the exact predic-
duced variance as compared to the single direction value, bi#ons of the K41-3 laws as test cases for our angle-averaging
one can see that there still is some variance from snapshot f8ethod, and its effectiveness in recovering isotropic compo-
snapshot. Thus, in order to obtained fully converged statistent of the statistics. And we have shown that the laws ap-
tics, some additional averaging is needed. In the followingP€ar to be valid to the extent possible for the achieved Rey-
section we present results combining angle and time averagdolds numbers. We expect that similar results, including the
ing. decreased variance in time, would be observed for any simi-
Based on the local version of the K41-3 laws proved inlar angle-averaged statistics. For example, the isotropic com-
Refs.[12,13, we expect that increasing the spatial resolutionPonent of structure functions of order 3 and higher could also
would allow us to obtain converged statistics from a singlebe studied using this procedure.
snapshot when used with angle-averaging. However, we
could not expect such convergence without angle-averaging. IV. CONCLUSIONS

This is because even in an isotropic flow, individual snap- We have proposed a computationally efficient and easil
shots are not necessary isotropic; only the ensemble of all prop P y y

snapshots is guaranteed to be isotropic. implemented means of extracting isotropic statistics from an

We note that the stochastic data@i. 9 shows a larger arbitrarily forced flow. As a first test of the method, we av-

variation from snapshot to snapshot when compared to thrgnrggei;hfesl[h;:]dd'cggigvset:ggutj;;ftl;]récﬂc:lf_‘gor\é?;ﬁz%zl(;f:tgf)_
deterministic datasdFig. 8). This is true for both the angle- y ang

averaged and single direction quantities shown in the figure%amed’ with tolerable variance, from single snapshot of

suggesting that the stochastic dataset produces data Withf (j%rgr?geﬁ?suiss flxovsvt,rg\r?tr;rerlttar;irltStLO;:E\iA'/S;g %L;i:ggmgmstﬂg
slightly larger variance in time, as expected. 9. 9 P y

original Kolmogorov ensemble approach or even the Nie-
Tanveer version of Ref6]. It appears that the results are, in
fact, approaching théocal versions of K41-3 proposed in
We now look at the 4/5 law using both angle-averagingRefs.[12,13.
(which extracts the isotropic component of the statistosl Using our procedure to extract the isotropic component,
time averagingto remove the variance observed from snap-we are able to separate the effect of anisotropy from the
shot to snapshptThe time average is taken from 60 snap- effect of finite Reynolds number on the statistics of the flow.
shots taken over six eddy-turnover times. The results ar&his is an important point to make in the debate on how the
shown in Fig. 10. The two datasets produce nearly identicaiwo effects contaminate the inertial range. Once the anisot-
results at all scales, even though the large-scale forcing i®py is eliminated, a more fruitful study of finite Reynolds
quite different. The peak value of the stochastic and deterumber effects can be made. It is clear from Fig. 10 that the
ministic datasets are 0.755 and 0.752, respectively. Reynolds numbers are still not sufficient to give the wide
Thus, we conclude that flows with similar geometry andinertial ranges that have been seen in high Reynolds number
Reynolds number have the same underlying isotropic comexperiments. However, it is also clear that angle-averaging
ponent at all scales, at least up to third-order statistics. has given a significant improvement in the results. With

D. Time-averaged results
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angle-averaging, less data is needed to obtain converged stzlue. Individual moments in a spherical harmonics expan-
tistics, and deterministic forcings can be used without regardion of structure functions can be computed by introducing
to the increased anisotropy they introduce. the basis function of interest to the integrand in Egf). In

The procedure we have described above can be used thbis way, the dominant scaling in anisotropic sectors can be
investigate the isotropic component of higher-order structureletermined, which is important to determine the rate of re-
functions or any other statistic as well. For example, theturn to isotropy at small scales. We plan to investigate such
angle-averagedhth-order longitudinal structure functions questions in future work.
may be measured in this way in order to determine scaling

exponents which are truly independent of anisotropy. This ACKNOWLEDGMENT
method may also be used to isolate the anisotropic contribu-
tions themselves, as has been done in Réf3,11], by sub- We thank Toshiyuki Gotoh for his assistance with the sto-

tracting from the full structure function its angle-averagedchastic forcing procedure and for fruitful discussions.
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