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Recovering isotropic statistics in turbulence simulations: The Kolmogorov 4Õ5th law
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One of the main benchmarks in direct numerical simulations of three-dimensional turbulence is the Kol-
mogorov prediction for third-order structure functions with homogeneous and isotropic statistics in the infinite
Reynolds number limit. Previous direct numerical simulations~DNS! techniques to obtain isotropic statistics
have relied on time-averaging structure functions in a few directions over many eddy-turnover times, using
forcing schemes carefully constructed to generate isotropic data. Motivated by recent theoretical work, which
removes isotropy requirements by spherically averaging the structure functions over all directions, we will
present results which supplement long-time averaging by angle-averaging over up to 73 directions from a
single flow snapshot. The directions are among those natural to a square computational grid, and are weighted
to approximate the spherical average. We use this angle-averaging procedure to compare the statistically steady
flows generated by two different forcing schemes in a periodic box. Our results show that despite the apparent
differences in the two flows, their isotropic components, as measured by the Kolmogorov laws, are essentially
identical. This procedure may be used to investigate the isotropic part of the small-scale statistics of any
quantity of interest. The averaging process is inexpensive, and for the Kolmogorov 4/5 law, reasonable results
can be obtained from a single snapshot of data. This implies consistency with the recently derived local
versions of the Kolmogorov laws, which do not require long-time averages.

DOI: 10.1103/PhysRevE.68.026310 PACS number~s!: 47.27.Gs, 47.27.Eq, 47.27.Jv
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I. INTRODUCTION

Both experimental and numerical studies of turbulen
have attempted to observe the 1941 predictions of Kolm
orov @1# ~which we will call K41! for the statistics of isotro-
pic, homogeneous, fully developed turbulence in the limit
infinite Reynolds number in an incompressible fluid. A ma
result of the theory is the so-called ‘‘4/5 law:’’

^@duL~r ,x!#3&52
4

5
«r , ~1!

duL~r ,x!5@u~x1r !2u~x!#• r̂ ,

r̂5r /r ,

where^•& denotes ensemble averaging. The left hand sid
Eq. ~1! is the well-known third-order longitudinal structur
function. The length scaler must lie in the inertial rangeh
!r !L, sufficiently far from the large scalesL and the dis-
sipation scales given by the Kolmogorov lengthh. The mean
energy dissipation rate of the flow is given by«. The 4/5 law
is one of the few exact, nontrivial results known in the theo
of statistical hydrodynamics. It may be reformulated in ter
of other components of the structure function by using
incompressibility constraint@2#

^duL~duT!2&5
1

6

]

]r
@r ^~duL!3&#, ~2!
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whereduT is a velocity increment along a vector transver
to the separation vectorr . In Eq. ~2! and henceforth, the
vector argumentr is implicit. This combined with Eq.~1!
gives the ‘‘4/15 law’’ and the ‘‘4/3 law,’’

^duL~duT!2&52
4

15
«r , ~3!

^duLuduu2&52
4

3
«r , ~4!

where uduu denotes the total magnitude of the velocity d
ference acrossr . We will refer to the three laws given by
Eqs. ~1!, ~3!, and ~4!, and the related theory collectively a
K41-3.

The K41-3 results have served as invaluable benchm
for the empirical study of high Reynolds number turbulen
in both experiments and numerical simulations. Conside
as exact results, they have allowed investigators to asses
degree to which homogeneous, isotropic, and high Reyn
number conditions have been attained. Furthermore, the d
vation of the K41-3 relations requires a fundamental, u
proven assumption, that turbulent energy dissipation ha
strictly positive limit as viscosity tends to zero. Hence, t
validity of the K41-3 relations constitutes an important te
of this basic assumption. Experiments in high Reyno
number turbulence, performed over the past half century,
by and large, support the linear scaling of the third-ord
structure functions inr. The convergence to the 4/5 coeffi
©2003 The American Physical Society10-1
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cient is quite slow as Reynolds number increases for la
scale anisotropic experiments@3,4#, although there is an em
pirical consensus that indeed this is asymptotically the c
rect coefficient. Recent numerical simulations@5# of the iso-
tropically forced Navier-Stokes equations also emphasize
slow approach to the 4/5 law, as the Reynolds numbers
pushed as high as computational power would allow. A k
feature of both experimental and numerical endeavors is
large volumes of data required; very long-time averages,
tending over many integral length scales or eddy-turno
times are needed to obtain adequate statistics and to ob
the trend toward K41-3.

A modified version of the 4/5 law, which does not assu
isotropy of the flow, now exists. Nie and Tanveer@6# proved
that the 4/3 and consequently, the 4/5 law can be recov
in homogeneous, but not necessarily isotropic, flows:

^~duL!3&5 lim
T→`

1

TE0

T

dtE dV

4p E dx

L3
@duL~r ;x,t !#3

52
4

5
«r . ~5!

The angle integrationdV integrates inr over the sphere o
radiusr. For each pointx, the vector incrementr is allowed
to vary over all angles and the resulting longitudinal m
ments are integrated. The integration overx is over the entire
flow domain. The integration over timet extends over long
times, and the long-time average is consistent with the
semble average of the original K41 theory since ergodic
allows identification of ensemble averages with time av
ages@7#. In Eq. ~5!, the integration overV extracts the iso-
tropic component of a generally anisotropic flow. This
fully consistent with recent experimental@8,9# and numerical
@10,11# efforts to quantify anisotropic contributions by pro
jecting the structure function onto a particular irreducib
representation, labeled byj 50,1, . . . of the SO~3! symme-
try group. The angle-averaged Eq.~5! corresponds to projec
tion onto thej 50 ~isotropic! sector by integration over th
sphere. The authors of Ref.@6# do not perform, numerically
the average over the sphere. However, they do point out
the direction ofr matters strongly. In their anisotropic dire
numerical simulation~DNS! simulation at moderate Rey
nolds number, the result of takingr along a coordinate direc
tion gave very poor agreement with the laws, whereas tak
r along a body diagonal, as defined by the square grid, g
much better agreement.

A local version of the 4/3 law was recently derived b
Duchon and Robert@12#. Subsequently, Eyink@13# derived
the corresponding version of the 4/5 and 4/15 laws. T
statement is the following: Givenany local regionB of size
R of the flow, for r !R, and in the limitsn→0, then r
→0, and finallyd→0,

^~duL!3& (V,B)5 lim
d→0

1

dEt

t1d
dtE dV

4p E
B

dx

R3
@duL~r ;x,t!#3

52
4

5
«Br ~6!
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for almost every~Lebesgue! point t in time, where«B is the
instantaneous mean energy dissipation rate over the loca
gion B. This version of the K41-3 results does not requ
stationarity, homogeneity, or isotropy of the flow. Long-tim
or ensemble averages are also not required, as in the orig
K41 theory @17#. The Duchon-Robert@12# and Eyink @13#
versions of K41-3 are truly local in space and time.

We are motivated in the present work by the existence
isotropic statistics embedded in anisotropic data, as s
gested by previous work. It is clear that both experime
and simulations face intrinsic difficulties in achieving th
high Reynolds numbers and isotropic limit required by t
K41 theory. Both anisotropy and finite Reynolds numbe
conspire to shorten the inertial range. Experiments h
achieved Reynolds numbers several orders of magnit
higher than simulations. The indication is that at such h
Reynolds numbers, the large-scale anisotropies decay fa
than the isotropic scales, allowing the latter to dominate
small scales@14#. However, while the linear scaling inr, of
the third-order structure function, is fairly robust, the coef
cient exhibits only a slow trend toward 4/5, as indicated
the numerical work of Ref.@5#. It is clear that for anisotropic
forcing, some choices of directions for the vector incremenr
are more ‘‘isotropic’’ than others@6#.

The concept of averaging over the sphere in order to
tract the isotropic component of turbulence data has exis
for some time@15,16#. Present high-Reynolds number e
periments provide limited data, often only a few spat
points of data acquisition, with vector increment directio
being limited by the location of the probes and the imp
mentation of a suitable space-time surrogation~Taylor’s hy-
pothesis!. Such configurations are not suitable to spheri
averaging. Numerical data has, in principle, complete spa
time information of the flow. However, the interpolation o
square-grid data over spherical shells has been deemed
expensive@6#, or, when some such interpolation scheme
implemented, has not been used at sufficiently high Reyno
numbers as would allow for observations of the K41 ty
@10#. The new angle-averaged and ‘‘local’’ laws of Ref
@8–10# provide us with the theoretical impetus to investiga
and extract the isotropic component of the flow in high Re
nolds number anisotropic turbulence. We use a method
taking the average over angles which avoids the expense
effort of interpolating the square-grid data over spheri
shells.

In Sec. II we discuss the numerical method and desc
the stochastic and deterministic numerical forcing schem
used in the past and reimplemented by us. In Sec. III
present an easily implemented scheme to average over
nite number of angles. Using the second- and third-or
isotropy relations, we demonstrate that this scheme is a g
approximation to the true spherical average. We then pre
results for the angle-averaged third-order structure functi
computed both from a snapshot of the flow at a single ins
in time and from time averaging the data from several sn
shots. A summary and concluding discussion of the result
given in Sec. IV.
0-2
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RECOVERING ISOTROPIC STATISTICS IN . . . PHYSICAL REVIEW E68, 026310 ~2003!
II. NUMERICAL SIMULATIONS

The numerical simulation of the forced Navier-Stok
equations for an incompressible flow is computed accord
to

] tu1v3u1“f5n“2u1f, ~7!

¹•u50, ~8!

where vorticityv5“3u andf is determined so as to main
tain “•u50. The domain is a periodic box of sideL52p
with N5512 grid points to a side. A standard Fourier pse
dospectral method is used for the spatial discretization
the equations are integrated in time using a fourth-or
Runge-Kutta scheme. Aliasing errors from the nonline
term are effectively controlled by removing all coefficien
with wave-number magnitude greater thankmax5(A2/3)N.
The code is optimized for distributed memory parallel co
puters and uses MPI for interprocess communication.
runs were made using 256 processors of a Compaq E
cluster.

We make use of two different types of low wave-numb
forcing. The first is modeled after the deterministic forci
schemes described in Refs.@3,17,18#, where the energy in a
few low wave numbers is relaxed back to a target spectr
We refer to the output using this forcing as the determinis
dataset. The second forcing is the stochastic forcing use
Ref. @5#, where the Fourier coefficients off are chosen ran
domly, and we refer to the data produced with this forcing
the stochastic dataset. Both forcings have advantages
disadvantages. The deterministic forcing equilibrates quic
and has less variance in time, so that less data is neede
converged time averages. But there is an unavoidable an
ropy throughout the simulation if the forcing is restricted
the lowest wave numbers. The stochastic forcing has a la
variance in time, so that data from more snapshots is nee
to obtain converged time averages, but statistics from th
snapshots are observed to be more isotropic. We perf
both kinds of forcing in order to demonstrate the equivale
of the results when angle averaging is applied to the dat

Parameters of interest for both simulations are given
Table I. For the stochastic forcing, we have chosen par
eters similar to those used for the 5123 simulations in Ref.
@5#. The parameters for the deterministic case were chose
that Rl would be similar in both cases.

TABLE I. The parameter values for the two data sets.N
5number of grid points per coordinate direction;n5viscosity, «
5mean energy dissipation rate,h5Kolmogorov scale, Rl

5Taylor microscale Reynolds number,ns5number of eddy turn-
over times to spin up, andnr5number of eddy-turnover times com
puted after spin up.

Data set N n « kmaxh Rl ns nr

Stochastic 512 631024 .5 1.1 263 6 6
Deterministic 512 431023 156 1.1 249 1 6
02631
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A. Deterministic forcing

We first define the energy in each spherical wave num
k in the usual way:

E~k!5 (
k20.5<uku,k10.5

1

2
uũku2, ~9!

whereũk is thekth Fourier coefficient ofu. We then choose
a target spectrum function given byF(k), which we set to
F(1)5F(2)50.5 andF(k)50 for k.2. We generate a ve
locity field ṽk with energyF(k), by setting

ṽk5AF~k!

E~k!
ũk .

The Fourier coefficients of the forcing function are th
given by

f̃ k5H t~ ṽk2ũk!, F~k!.E~k!

0, F~k!<E~k!.

The relaxation parameter is chosen ast2152u“uu, a sim-
plified version of the formula given in Ref.@17#.

This forcing simply relaxes the amplitudes of the Four
coefficients in the first two wave numbers, so that the ene
matches the target spectrumF(k) in those wave numbers. I
has no effect on the phase of the coefficients. The phase
observed to change very slowly, giving rise to persistent
isotropy in the large scales.

B. Stochastic forcing

Our second type of forcing is modeled after the stocha
scheme of Ref.@5#, in which the wave numbersuku<2.5 are
stochastically forced. This ensures that the phase of e
forced mode changes sufficiently rapidly so that the la
scales will be statistically isotropic. At the beginning of ea
time step, we choose a divergence-free forcing function

f5“3D21g, ~10!

where the Fourier coefficients ofg, denoted byg̃k , are cho-
sen randomly with uniformly distributed phase and Gauss
distributed amplitude. The variance in the Gaussian distri
tion is chosen such that

(
0.5<uku,1.5

ug̃ku25 (
1.5<uku,2.5

ug̃ku2518. ~11!

III. ANGLE-AVERAGING TECHNIQUE

We would like to extract the isotropic component of
flow by a suitable average of the two-point structure fun
tions over the solid angleV, as defined by Eqs.~5! and~6!.
We approximate the spherically averaged third-order lon
tudinal structure function by the following average over
finite numberNd of directions:
0-3
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^@duL~r !#3&5
1

Nd

1

N3 (
j 51

Nd

(
i 51

N3

wj@duL~r j ;xi !#
3, ~12!

wherexi denotes grid points,r j denotes the increment vecto
in the j th direction,r 5ur j u is fixed, and thewj are quadra-
ture weights. Here we are using the longitudinal struct
function as an example. The procedure applies equally w
to any two-point structure function.

The simulation is computed on a fixed uniform rectang
lar mesh. Thus, we are faced with the difficulty of evaluati
u at points (xi1r j ), most of which will not be grid points
The most straightforward approach would be to perfo
three-dimensional~3D! interpolations at each of the poin
(xi1r j ). This requires N3Nd 3D interpolations of the
velocity-vector field for each separation distancer, which is
prohibitively expensive@6#.

We have developed a less expensive technique for an
averaging, which does not require any 3D interpolations.
first choose vectorsr j from among those natural to a squa
computational grid. We restrict ourselves to the set of
unique directions which can be expressed with integer c
ponents with length less than or equal toA11. Let j
51, . . . ,Nd be the index for this set. Eachr j is the minimum
grid-point separation distance in thej th direction. This set is
generated by vectors~1,0,0!, ~1,1,0!, ~1,1,1!, ~2,1,0!, ~2,1,1!,
~2,2,1!, ~3,1,0!, and~3,1,1!, by taking all the index and sign
permutations of the three coordinates, and removing any
tor which is a positive or negative multiple of any oth
vector in the set. This procedure generates a total ofNd
573 unique directions. The unit vectors associated with e
direction are plotted as points on the sphere in Fig. 1. O
can see that these points are well distributed over the sph
Both the unit vectorsr̂ j and2 r̂ j are plotted, but below we do

FIG. 1. Unit sphere in a Cartesian coordinate grid, show
some of theNd573 directions over which the average is taken.
02631
e
ll

-

le-
e

ll
-

c-

h
e
re.

not consider the2 r̂ j directions since they give the sam
contribution asr̂ j when averaged over the periodic compu
tional domain.

For each of theNd directions, we form a set of,
51, . . . ,Nr separation vectorsxi1,r j . Sincer j is the mini-
mum separation distance of grid points in thej th direction
and, is an integer, all thexi1,r j lie on our computational
grid. This is illustrated~in two dimensions! for four direc-
tions in Fig. 2, where the black dots represent pointsxi
1,r j andxi is shown at the origin. We can now efficientl
compute structure functions inNd different directions, atNr
separation distances for each direction, without any 3D in
polations:

^@duL~,r j !#
3&5

1

N3 (
i 51

N3

@duL~,r j ;xi !#
3. ~13!

For each direction, we get a one-dimensional curve a
function of ,r j , as shown in Fig. 3.

In the figure, points represent structure function values
the separation distances,ur j u, and each line is a cubic-splin
fit to the data at,51, . . . ,Nr along each of theNd direc-
tions. One can see that only a few directions are compute
each of the separation distances, so we cannot directly
an angle-average from this data. But one can also see tha
curves are quite smooth and the cubic spline is an exce
interpolant. Thus, we use cubic-spline interpolation to cal
late the structure function in each of theNd directions, at
separation vectorr r̂ j of any desired lengthr.

g

FIG. 2. Two-dimensional example, in theXY plane, of how data
is collected for the angle-averaging procedure. Four directions
shown:~1,0!, ~2,1!, ~3,1!, and~1,1!. Velocity data is known at all the
grid points. The black dots represent values ofr where structure
functions for a particular direction can be computed with no int
polations. Each structure function can then be interpolated to
cific values ofr, shown by the white dots.
0-4
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Once the data for each direction has been interpolated
common separation distancer, we can approximate the
angle-average atr by quadrature over the followingNd di-
rections:

^@duL~r !#3&5
1

Nd
(
j 51

Nd

wj^@duL~r r̂ j !#
3&. ~14!

In order to determine the quadrature weightswj , we use the
software packageSTRIPACK @19# to compute the Voronoi til-
ing generated by pointsr̂ j on the unit sphere centered atx.
Weight wj is the solid angle subtended by the Voronoi c
containing pointr̂ j .

The angle-averaging procedure described above can
implemented efficiently on parallel computers, requirin
only the same type of parallel data transpose operator alre
used by a parallel pseudospectral code. The total cost of
angle-averaging procedure for one snapshot~73 directions
and 100 different separation distances! is about the same a
150 time steps of the Navier-Stokes code. Thus, for a sin
eddy-turnover time, where thousands of time steps are
quired, the angle-averaging statistics can be computed du
the computation with minimal impact on the total CPU tim
requirement.

A. Extracting the isotropic component

We first present results demonstrating how well the ang
averaging procedure performs at extracting the isotro
component from our DNS data. We again follow Ref.@5# and
examine the relations between the second- and third-o
velocity structure functions:

FIG. 3. The third-order structure function, nondimensionaliz
by normalizing with«r , computed from a single snapshot from th
deterministic dataset. The abscissa shows the nondimensional
r /h, whereh is Kolmogorov length scale. The dots indicate th
values of the structure function computed at various,r j . Each thin
curve is the cubic-spline interpolation through all computed valu
of the structure function in a particular direction. Only a few of th
73 different directions are shown here for visual clarity. The ho
zontal line indicates the 4/5 mark.
02631
a

l

be

dy
is

le
e-
ng

-
ic

er

^~duT!2&5S 11
r

2

d

dr D ^~duL!2&, ~15!

^duL~duT!2&5
1

6

d

dr
r ^~duL!3&. ~16!

These equations require only isotropy and incompressibi
Thus, in DNS data, where incompressibility is obtained
numerical round off error, deviations in the above relatio
are a measure of the anisotropy in the data. In Ref.@5#, the
left and right sides of these equations are plotted after av

ale

s

-

FIG. 4. Second-order isotropy relation for the stochastic data
vs the nondimensional scaler /h. Solid lines: Left and right sides of
Eq. ~15!, normalized byr 2/3 and angle-averaged. The units on th
ordinate are those of«2/3. Dotted lines: The same quantities for
single coordinate direction.

FIG. 5. Third-order isotropy relation for the determinist
dataset vs the nondimensional scaler /h. Solid lines: Left and right
sides of Eq.~16!, normalized byr and angle-averaged. The units o
the ordinate are those of the energy dissipation rate«. Dotted lines:
The same quantities for a single coordinate direction.
0-5
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TAYLOR, KURIEN, AND EYINK PHYSICAL REVIEW E 68, 026310 ~2003!
aging in time. Excellent agreement is obtained in the iner
range, with some departure at larger scales.

In Fig. 4, we show the second-order isotropy relation
our stochastic dataset, and in Fig. 5 we show the third-or
relation for the deterministic dataset. This data is compu
by angle-averaging over a single snapshot of the flow. T
agreement is excellent, both in the inertial range and at
largest scales. For comparison, the figures also show
same relations from the same snapshot but using on
single coordinate direction instead of angle-averaging.
that case, there are significant differences for scales well
the inertial range. Thus, the angle-averaging technique
pears to be extremely effective in extracting the isotro
component of anisotropic data even at large scales, wh
anisotropy remains after time averaging over many sn
shots. Similar results were obtained for the second-or
isotropy relation from the deterministic dataset and for t
third-order isotropy relation from the stochastic dataset.

B. Angle-averaging a single snapshot

We now present results using angle-averaging to comp
the third-order longitudinal structure function in the 4/5 la
Figures 6 and 7 show the result of the angle-averaging p
cedure described above for single snapshots of the stoch
and deterministic datasets, respectively. The snapshots
taken after the flow has had time to equilibrate. The value
the mean energy dissipation rate« was calculated from the
snapshot. This is to be contrasted with previous works
which « is a long-time or ensemble average. We have the
fore computed a version of the 4/5 relation which is local
time. The dots represent the data from all 73 directions at
values ofr that were computed. The final weighted ang
average of Eq.~14! is given by the thick curves in both Figs
6 and 7. One can see that the results from different directi

FIG. 6. The nondimensional third-order longitudinal structu
function, computed from a single snapshot of the stochastic data
vs the nondimensional scaler /h. The dots indicate the values of th
structure function computed at various,r j . The thick curve is the
angle average. The horizontal line indicates the 4/5 mark.
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are quite different, while the angle-averaged results are q
reasonable and similar to each other as well as similar to
results obtained from long-time averaging of the coordin
directions presented in Ref.@5# and shown for our data in
Sec. III D. Thus, we conclude that angle-averaging the d
from a single snapshot yields a very reasonable result. S
lar results~not plotted! are obtained for the 4/3 and 4/1
laws.

C. Temporal variance

To illustrate the variance in time of the third-order long
tudinal structure function, with and without angle-averagin
we plot the peak value as a function of time for each data

et,
FIG. 7. The nondimensional third-order longitudinal structu

function computed from a single snapshot of the determinis
dataset vs the nondimensional scaler /h. The various symbols and
lines mean the same as in Fig. 6.

FIG. 8. The angle-averaged~solid line! and single-direction
~dotted line! values of the peak of the nondimensionalized thir
order longitudinal structure function for deterministic dataset, a
function of nondimensional timet/T, whereT52E/e is the eddy-
turnover time.
0-6
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RECOVERING ISOTROPIC STATISTICS IN . . . PHYSICAL REVIEW E68, 026310 ~2003!
in Figs. 8 and 9. The solid line is the angle-averaged va
and the dashed line is the value from a single coordin
direction. The angle-averaged value has a significantly
duced variance as compared to the single direction value
one can see that there still is some variance from snapsh
snapshot. Thus, in order to obtained fully converged sta
tics, some additional averaging is needed. In the follow
section we present results combining angle and time ave
ing.

Based on the local version of the K41-3 laws proved
Refs.@12,13#, we expect that increasing the spatial resolut
would allow us to obtain converged statistics from a sin
snapshot when used with angle-averaging. However,
could not expect such convergence without angle-averag
This is because even in an isotropic flow, individual sna
shots are not necessary isotropic; only the ensemble o
snapshots is guaranteed to be isotropic.

We note that the stochastic dataset~Fig. 9! shows a larger
variation from snapshot to snapshot when compared to
deterministic dataset~Fig. 8!. This is true for both the angle
averaged and single direction quantities shown in the figu
suggesting that the stochastic dataset produces data w
slightly larger variance in time, as expected.

D. Time-averaged results

We now look at the 4/5 law using both angle-averag
~which extracts the isotropic component of the statistics! and
time averaging~to remove the variance observed from sna
shot to snapshot!. The time average is taken from 60 sna
shots taken over six eddy-turnover times. The results
shown in Fig. 10. The two datasets produce nearly ident
results at all scales, even though the large-scale forcin
quite different. The peak value of the stochastic and de
ministic datasets are 0.755 and 0.752, respectively.

Thus, we conclude that flows with similar geometry a
Reynolds number have the same underlying isotropic c
ponent at all scales, at least up to third-order statistics.

FIG. 9. The angle-averaged~solid line! and single-direction
~dotted line! values of the peak of the nondimensionalized thi
order longitudinal structure function for stochastic dataset, a
function of nondimensional time, as in Fig. 8.
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We have used the incompressibility relations for isotrop
second- and third-order statistics as well as the exact pre
tions of the K41-3 laws as test cases for our angle-averag
method, and its effectiveness in recovering isotropic com
nent of the statistics. And we have shown that the laws
pear to be valid to the extent possible for the achieved R
nolds numbers. We expect that similar results, including
decreased variance in time, would be observed for any s
lar angle-averaged statistics. For example, the isotropic c
ponent of structure functions of order 3 and higher could a
be studied using this procedure.

IV. CONCLUSIONS

We have proposed a computationally efficient and eas
implemented means of extracting isotropic statistics from
arbitrarily forced flow. As a first test of the method, we a
eraged the third-order structure functions over sufficien
many angles and discovered that the K41-3 relations are
tained, with tolerable variance, from asingle snapshot of
homogeneous flow, with either stochastic or determinis
forcing. This is a stronger result than was predicted by
original Kolmogorov ensemble approach or even the N
Tanveer version of Ref.@6#. It appears that the results are,
fact, approaching thelocal versions of K41-3 proposed in
Refs.@12,13#.

Using our procedure to extract the isotropic compone
we are able to separate the effect of anisotropy from
effect of finite Reynolds number on the statistics of the flo
This is an important point to make in the debate on how
two effects contaminate the inertial range. Once the anis
ropy is eliminated, a more fruitful study of finite Reynold
number effects can be made. It is clear from Fig. 10 that
Reynolds numbers are still not sufficient to give the wi
inertial ranges that have been seen in high Reynolds num
experiments. However, it is also clear that angle-averag
has given a significant improvement in the results. W

-
a

FIG. 10. The nondimensional time- and angle-averaged th
order structure function, for the deterministic dataset~solid line!
and the stochastic dataset~dotted line!, as functions of the nondi-
mensional scaler /h. The two curves are almost indistinguishabl
0-7



s
a

d
ur
th
s
lin
h
ib

ed

an-
ing

be
re-
uch

to-

TAYLOR, KURIEN, AND EYINK PHYSICAL REVIEW E 68, 026310 ~2003!
angle-averaging, less data is needed to obtain converged
tistics, and deterministic forcings can be used without reg
to the increased anisotropy they introduce.

The procedure we have described above can be use
investigate the isotropic component of higher-order struct
functions or any other statistic as well. For example,
angle-averagednth-order longitudinal structure function
may be measured in this way in order to determine sca
exponents which are truly independent of anisotropy. T
method may also be used to isolate the anisotropic contr
tions themselves, as has been done in Refs.@10,11#, by sub-
tracting from the full structure function its angle-averag
S

d

n

v.

02631
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value. Individual moments in a spherical harmonics exp
sion of structure functions can be computed by introduc
the basis function of interest to the integrand in Eq.~14!. In
this way, the dominant scaling in anisotropic sectors can
determined, which is important to determine the rate of
turn to isotropy at small scales. We plan to investigate s
questions in future work.
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